Epidemic of Vitamin D Deficiency and Health Hazards

> Wayne Meikle, MD Professor of Endocrinology and Pathology, U of U School of Medicine

Objectives

- List the main sources of vitamin D
- Describe the endocrine changes associated with vitamin D deficiency
- Know disease risks associated with vitamin D deficiency
- Know how to diagnose and treat vitamin D deficiency

Mechanisms of Calcium Regulation

PTH

- 1,25 dihydroxy Vit. D
- Calcitonin
- Calcium sensor receptor
- Calcium effects

Biological pathway

Calcium Regulation of PTH

Main causes of hypocalcemia

- 1) loss of calcium from the circulation
- 2) hypoparathyroidism including pseudohypoparathyroidism
- 3) Magnesium deficiency
- 4) vitamin D deficiency.

PTH-Calcium Nomogram

Treatment of Hypocalcemia

- Hypoparathyroidism, primary or secondary
 - Oral calcium for mild cases plus vitamin D or calcitriol
 - Intravenous calcium if the symptoms are severe
- Vitamin D deficiency
 - Vitamin D plus supplemental calcium
- Magnesium deficiency
 - magnesium

Vitamin D Deficiency Without Hypocalcemia

Secondary Hyperparathyroidism Osteomalacia Osteoporosis

25 OH Vitamin D and Vitamin D₃ Dose

FIGURE 1. Time course of serum 25-hydroxycholecalficerol [25(OH)D] concentration for the 4 dosage groups. The points represent the mean values, and error bars are 1 SEM. The curves are the plot of Equation 1, fitted to the mean $25(OH)D_3$ values for each dosage group. The curves, from the lowest upward, are for 0, 25, 125, and 250 µg cholecalciferol (labeled dose)/d. The horizontal dashed line reflects zero change from baseline.

Heaney et al. Am J Clin Nutr 77:204-10, 2003; Note 40 IU=1ug D₃

Vitamin D production in the skin

- 10000 20000 IU maximal daily production
 i.e. 1 minimal erytheme dose (MED)
 whole body exposition
- provitamin D3 is photolabile and will be converted to vitamin D3 after some time of deposition in the skin

Minimal Erytheme Dose (MED)

- Amount of UVB that produces redness
 24 hours after exposure
- Learn your MED to avoid Sunburns

UV-induced Vitamin D

- 90-95% of vitamin D demand is fullfilled by UVBradiation
- the daily demand is about 1000 IU
- i.e. 25% wholebody exposition with ¼ MED (minimal erytheme dose)

Prudent Use of Sunlight

Sunexposition of 18% body surface with 1/3 - 1/2 MED 2-3 x per week from spring to autumn at high noon according to the skin type for 5-20 min

- face and arms
- or lower arms and lower legs
- whole body exposition 1/4 MED (2-5 min)

UVB therapy in medical light cabin 1 x per week with 1/2 MED

Variable Skin Characteristics

Skin Type I (2%)

- Red/red-blond hair, freckles
- Always sunburned, no tanning of the skin
- 5-10 minutes to develop erythema

- Blond, fair/light colored eyes
- Often sunburned, weak tanning of the skin
- 10-20 minutes to develop erythema

Skin Type III (78%)

- Brunette, light or dark eye color
- Rarely sunburned, good skin pigmentation
- 20-30 minutes to develop erythema

Skin Type IV (8%)

Skin Type II (12%)

- Dark hair, Mediterranean type
- Never sunburned, dark tan
- Approximately 45 minutes to develop erythema

Optimal and Normal Vitamin D-25OH Concentrations

Optimal 25-hydroxyvitamin D values are: 30-60 ng/mL Toxicity >100 ng/mL 25-hydroxyvitamin D lab values are: Insufficiency 20-30 ng/mL

Deficiency <20 ng/mL

Measurement Total Vitamin D 25 OH

- Vitamin D3 25 OH animal sources
- Vitamin D2 25 OH Plant sources
- Mass Spec can measure both forms and provide a total value
- RIA can measure total from both sources
- No known advantage to measure both forms

1,25 DihydroxyVitamin D or Calcitriol

- Circulating Mainly made in the kidney
- Stimulated by PTH and hypophosphatasemia
- Renal failure and PTH deficiency can cause a deficiency and hypocalcemia
- Used to diagnose hypercalcemia
- Monitor therapy of renal failure

Extrarenal Synthesis of Vitamin D 1,25 (OH)₂ D₃

- Autonomous production 1,25 (OH)₂ D₃
- Colon
- Prostate
- Mammary gland
- Many other tissues

Lechner et al. Molecular and Cellular Endocrinology 263: 55-64, 2006

How is the optimal serum concentration of Vitamin D 25 OH Determined?

Relationship between PTH and Serum Vitamin 25(OH)D

Figure 2. Relation between Serum 25-Hydroxyvitamin D Concentrations and Mean (±SE) Serum Concentrations of Parathyroid Hormone in the Study Patients. Thomas, NEJM, 338:777-83

Vitamin D Concentration and Calcium Absorption

- Postmenopausal women
- Increase vitamin D 25 OH from 20 ng/ml to 32 ng/ml increased intestinal calcium absorption 65%.
- This led to defining vitamin D insufficiency as a 25(OH)D concentration of 21–29 ng/ml

Heaney et al J Am Coll Nutr. 22:142-6, 2003

Priemel et al. JBMR 25: 305-12, 2010

How Frequent is Vitamin D Deficiency?

- About 58% of assays for Vitamin D 25 OH at ARUP in 2008 and 2009 were less than 30 ng/mL
- ng/mL=2.5 nMol/L

Vitamin D 250H

Total Vitamin D 25				
Numbers 7-27 to 8-27				
Total #	<10 ng/mL	10-19 ng/mL	20-29 ng/mL	30+ ng/mL
143685	1656	10432	49363	66766
	1.2%	7.3%	34.4%	46.5%

Ginde et al Arch Intern Med 169:626-32, 2009

Ginde et al Arch Intern Med 169:626-32, 2009

Ginde et al Arch Intern Med 169:626-32, 2009

Watching Television

- >4 hours daily 38% Vitamin D <15 ng/mL
- No TV 2% Vitamin D < 15 ng/mL</p>

Vitamin D Transport Blood

- Vitamin D binding protein (DBP)-4-8 mM
 - 85-88%, only about 2% saturated
 - 250H, Ka=5x108M
 - 1,25(OH)2D, Ka=4x107M
- Albumin
 - **12-15%**
- Free Vitamin D
 - 250HD-0.03%
 - 1,25(OH)2D-0.4%

Why has Vitamin D Deficiency Increased?

Sun Exposure

- UV triggers Vitamin D synthesis
- Influenced by
 - Season
 - Geographic latitude
 - Time of day
 - Cloud cover-reduces 50%
 - Smog
 - Sunscreen-SPF 8 or > blocks vitamin D
 - Sunlight-10-15 minutes adequate time for vitamin D synthesis

Hypovitaminosis D

Causes of Vitamin D deficiency

- Dietay
- Sunscreen
- Limited sun exposure
- Malabsorption
- Decreased 25 hydroxylation in the liver
- Kidney can't convert Vitamin D 25 to 1, 25 dihydroxyvitamin D
Who needs supplemental Vitamin D

- Breast feed infants
- Older adults
- Persons with limited sun exposure
- Darker skin people
- Persons with fat malabsorption
- Anticonvulsants

Vitamin D

- Osteoporosis-silent contributor
- Cancer protection-colon, prostate
- Corticosteroids-decrease vitamin D absorption
- Caffeine-may decrease Vitamin D absorption

Food Sources of Vitamin D

- Milk fortified with Vitamin D, 400 IU/Qt
- One cup supplies
 - 50% recommended for adults 19-50 yrs
 - 25% for 51-70 yrs
 - 15% for 71 and older
- Cheese and Ice cream are not fortified

Table 1. Dietary, Supplemental, and and D_3 .*	Pharmaceutical Sources of Vitamins D ₂										
Source	Vitamin D Content	Fortified foods									
Natural sources	_	Fortified milk	About 100 IU/8 oz, usually vitamin D								
Salmon		Fortified orange juice	About 100 IU/8 oz vitamin D $_3$								
Fresh, wild (3.5 oz)	About 600–1000 IU of vitamin D_3	Infant formulas	About 100 IU/8 oz vitamin D $_3$								
Fresh, farmed (3.5 oz)	About 100–250 IU of vitamin D₃ or D.	Fortified yogurts	About 100 IU/8 oz, usually vitamin D_3								
Canned (3.5 oz)	About $300-600$ III of vitamin D	Fortified butter	About 50 IU/3.5 oz, usually vitamin D_{3}								
Sardines canned (3.5 oz)	About 300 III of vitamin D.	Fortified margarine	About 430 IU/3.5 oz, usually vitamin D_3								
Mackerel canned (3.5 oz)	About 250 IU of vitamin D_3	Fortified cheeses	About 100 IU/3 oz, usually vitamin $D_{\scriptscriptstyle{3}}$								
Tuna, canned (3.6 oz)About 230 IU of vitamin D_3		Fortified breakfast cereals	About 100 IU/serving, usually								
Cod liver oil (1 tsp)	About 400–1000 IU of vitamin D_3	Supplements									
Shiitake mushrooms		Prescription									
Fresh (3.5 oz)	About 100 IU of vitamin D_2	Vitamin D. (argocalciferel)	50.000 III/capsula								
Sun-dried (3.5 oz)	About 1600 IU of vitamin D2	D_2 (ergocalcherol)									
Egg yolk	About 20 IU of vitamin D_3 or D_2	supplements	8000 10/mi								
Exposure to sunlight, ultraviolet B	About 3000 IU of vitamin D_3	Over the counter									
erythemal dose)†		Multivitamin	400 IU vitamin D, D_2 , or D_3 ;								
		Vitamin D_3	400, 800, 1000, and 2000 IU								

Holick NEJM 357:266-281, 2007

Sun Exposure Scale and Serum 25(OH)D

Tanning Bed Effects on 25(OH)D, Calcium and PTH

10 min. 3 times/week for 6 months

Holick Curr. Opin.Endo Diab. 9:87-98, 2002

Serum 25(OH)D Seniors Boston in August

10-5-A 80 % of volunteers < 20 ng/mL 25(OH)D 60 40-Holick Curr. 20-Opin.Endo Diab. O 9:87-98, 2002 в

Effect of Sunscreen and Aging on Serum 25(OH)D

Holick Curr. Opin.Endo Diab. 9:87-98, 2002

Serum 25(OH)D in Long-term Sunscreen Users

Matsuoka, Arch Derm 124:1802-04, 1988

What are the health consequences of Vitamin D deficiency?

Vitamin D deficiency Studies in Mice

Mimics Deficiency in Humans and Health Risks

Vitamin D Receptor (VDR) Null Mice

- VRD or vitamin D deficiency
- Immune system is grossly normal
- Increased sensitivity to autoimmune diseases, such as inflammatory bowel disease or type I diabetes after exposure to predisposing factors
- More prone to oncogene or chemocarcinogen-induced tumors

Vitamin D Receptor (VDR) Null Mice

Increased

- High renin hypertension
- Cardiac hypertrophy
- Thrombogenicity
- Increased prevalence of diseases in humans

Vitamin D and the Endocrine System

- Fertility decreased in males and females
- Reduced sperm number and motility
- Increased LH and FSH
- Hypergonadotropic hypogonadism
- These are from studies in mice and human studies need to be done.

Health Consequences of Vitamin D Deficiency in humans

Disease Incidence Prevention by Serum 25(OH)D Level																																
Serum 25(OH)D, ng/ml	6	8	10	12	14	16	18	20	22	24	26	28	30	32	34	36	38	40	42	44	46	48	50	52	54	56	58	60	62	64	66	68
Studies of Individuals																																
Cancers, all combined																		35%														
Breast Cancer														30%		Х	Х	Х	Х	Х	Х	Х	X	83%								
Ovarian Cancer																	12%					179	%									
Colon Cancer														31	%	3	8%	Х	Х	60%												
Non-Hodgkins Lymphoma										svel				12	2%			18%														
Type 1 Diabetes										e L					25%									6	6%							
Fractures, all combined										end						2	5%				50%											
Falls, women										efe		7 2 %																				
Multiple Sclerosis										m									33%				4	6%	Х	54%						
Heart Attack (Men)										Seru						30%	6															
Natural Experiments																																
Kidney Cancer															23	%							49%	6								
Endometrial Cancer																						37	%									
Rickets 50	0%							99%																								

٦.

Chart prepared by: Garland CF, Baggerly CA

Age-, Sex- and Race-adjusted Prevalence and ORs of Select CV Disease Risk Factors between the First and Fourth Quartiles of Serum 25(OH)D Levels

	Prevalence of			
Risk factor	1st quartile (< 21 ng/ml)	4th quartile (≥37 ng/ml)	OR	P value
Hypertension	20.46	15.10	1.30	0.001
Diabetes	6.85	3.38	1.98	< 0.001
Obesity	24.69	11.50	2.29	< 0.001
Triglyceride level ≥ 150 mg/dl	32.86	23.84	1.47	< 0.001
ACR ≥ 200 for males $/ \ge 300$ for females	1.59	0.76	2.54	< 0.001

Martins D et al., Arch Intern Med 2007; 167: 1159-1165

Obesity and Vitamin D 25 OH Insufficiency

Common

- Is the vitamin D insufficiency of obesity causally related to health hazards?
- Diabetes
- Cardiovascular disease
- Cancer
- Gonadal dysfunction

Table 2.25OHD concentrations (ng/ml) of 90 women separated by ethnicity and body mass

		250HD (ng/ml)	
	All	Hispanic	Caucasian
	(n = 90)	(n = 53)	(n = 37)
All BMI	30.1 ± 13.0	$26.6 \pm 12.3^{\ddagger\ddagger}$	35.1 ± 12.4
(n = 90)	(6.7 - 69.6)	(6.7 - 67.3)	(14.2 - 69.6)
Lean (BMI < 25)	$34.3 \pm 13.8^*$	31.2 ± 14.6	36.6 ± 12.9
(n = 51)	(15.2 - 69.6)	(15.2 - 67.3)	(16.1 - 69.6)
Overweight (BMI \ge 25)	24.6 ± 9.5	23.3 ± 9.3	29.7 ± 9.3
(n = 39)	(6.7 - 46.0)	(6.7 - 44.9)	(14.2 - 46.0)

Values are expressed as mean \pm SD and (range).

*Indicates a significant difference between lean and overweight subjects (P < 0.001)

[†] Indicates a significant difference between Hispanics and Caucasians (P = 0.002)

^{\ddagger} ANOVA analysis indicates no statistical difference between Hispanics and Caucasians when adjusted for BMI (P = 0.09)

Kremer et al JCEM 93, 2008

Kremer et al JCEM 93, 2008

Vitamin D Concentrations and Cancer Risk

- Inverse association between vitamin D
 25 OH and colorectal cancers
- Mixed results with association of Vitamin D 25 OH and prostate and breast cancer

Vitamin D and the Immune System

- Vitamin D deficiency associated with
 - Increased susceptibility to infections
 - Autoimmune disease such as type I diabetes

Vitamin D and the Endocrine System

- Vitamin D deficiency
- Impairs
 - Insulin secretion
 - Glucose tolerance
- Increases risk of metabolic syndrome
- Increases cardiovascular risk
- Decreased muscle mass, strength and predisposition to falls in the elderly

Vitamin D and Type 2 Diabetes

- Vitamin D 250H score and T2D
- Framingham Study-133 T2D cases over 7 years
- Highest quartile vitamin D score compared to lowest quartile at baseline had 40% lower incidence of T2D
- Adjusted for age, sex, waist circumference, prenatal history of T2D, hypertension, low HDL, cholesterol, elevated triglycerides, impaired fasting glucose, and dietary guidelines
 - Lin et al, Am J Clin Nutr, 2010

Vitamin D-Calcium Effect on Bone Remodeling Markers

Grados, JCEM 88:5175-79, 2003

Figure 2. Forest Plots Comparing the Risk of Hip and Nonvertebral Fractures Between Vitamin D (700-800 IU/d and 400 IU/d) and Control Groups

Bischoff-Ferrari JAMA 293:2257, 2005

Myocardial Infarction Risk and Vitamin D 25 OH

Table 3. Estimated RRs of MI by Level of 25(OH)D at Baseline During 10 Years of Follow-up

		<i>P</i> Value			
Variable	≤ 15.0	15.1-22.5	22.6-29.9	≥30.0	(Trend)
Cases/controls, No. RR (95% CI)	63/87	156/307	165/299	70/207	NA
Matching variables	2.42 (1.53-3.84)	1.65 (1.15-2.37)	1.72 (1.22-2.42)	1 [Reference]	<.001
MV1 ^a	2.01 (1.22-3.30)	1.45 (0.99-2.12)	1.56 (1.09-2.22)	1 [Reference]	.02
MV2 ^b	2.09 (1.24-3.54)	1.43 (0.96-2.13)	1.60 (1.10-2.32)	1 [Reference]	.02

Giovannucci E et al Arch Intern Med 168:1174-1180, 2008

Hazard Ratio (95% CI) Cardiovascular Mortality

Dobmig H et al Arch Intern Med 168: 1340-1349, 2008

Potential Mechanisms of Vitamin D Health Protection

Effect of Vitamin D, 1, 25 (OH)2 on Foam Cells in Diabetic

Oh et al Circulation 120:687-698, 2009

Effect of Vitamin D, 1, 25 (OH)2 on Foam Cells in Diabetic

Oh et al Circulation 120:687-698, 2009

Vitamin D and diabetic cardiovascular disease

- Deletion of vitamin D receptors in macrophages from diabetics accelerated foam cell formation induced by modified LDL.
- Vitamin D receptor signaling is a potential mechanism underlying increased foam cell formation and accelerated cardiovascular disease in diabetic subjects.

B CYP24A1

FIG. 1. DBP knockout serum increases monocyte responses to vitamin D metabolites. Human monocytes cultured in medium supplemented with 5% serum from DBP^{+/-} and DBP^{-/-} mice were treated with 250HD₃ (2–200 nM), 1,25(OH)₂D₃ (0.02–2 nM), or vehicle control (C, 0.2% ethanol) for 6 h. RNA from the resulting cells were then analyzed by RT-PCR for cathelicidin (panel A) and 24-hydroxylase (CYP24A1) (panel B). Data are shown as mean (n = 3) changes in RT-PCR $\Delta\Delta$ Ct values relative to vehicle-treated cells. *, Statistically different from DBP^{+/-} serum cells at *P* < 0.001.

Chun et al JCEM 95:3368-3376, 2010 Changes in glucose and insulin concentration during the first phase of insulin secretion (AUC₁₋₈) before and after treatment with alphacalcidol. Values are mean + SE. B = before treatment; A = after treatment.

Kotsa. Vitamin D treatment and glucose metabolism in PCOS. Fertil Steril 2009.

Insulin Sensitivity and Vitamin D 250H in PCOS 2.5 3MI-adjusted whole-body insulin sensitivity index 2.0 1.5 1.0 0.5 0.0 25(OH)D <= 15 ng/ml 25(OH)D > 15 ng/ml

BMI-adjusted WBISI by vitamin D-deficiency status. *, P for difference between groups = 0.047.

Ashraf et al JCEM (4: 3200-06, 2009
Vitamin D and Endothelial **Function** 20 200 Endothelial Function (FMD %) 25(OH)D3 (nMol/L) 15 150 100 10 50 5 0 0 **Before Treatment** After Treatment Before Treatment After Treatment

Tarcin JCEM 94: 4023-30, 2009

Vitamin D and Flow Mediated Dilatation

The correlation data of the vitamin D-deficient subjects and the control group showed a positive association between $25(OH)D_3$ and FMD values (r = 0.45; P = 0.001), also between $25(OH)D_3$ and $1,25(OH)_2D$ levels (r = 0.57; P < 0.0001). There was a negative correlation between FMD and TBARS (r = -0.28; P < 0.05), also between $25(OH)D_3$ levels and TBARS (r = -0.46; P = 0.001).

Tarcin JCEM 94: 4023-30, 2009

Cancer and Vitamin D

- Randomized control trial in postmenopausal women 1100 IU vitamin D₃ plus 1500 mg of calcium daily for 4 years
- Vitamin D group vitamin D 250H increased 24 nmol/L
- No change in calcium only or placebo

■ >60% reduction in all cancers Lappe et al. Am J Clin Nutr 85:1586-91, 2007

Vitamin D and Calcium on Cancer Free

FIGURE 1. Kaplan-Meier survival curves (ie, free of cancer) for the 3 treatment groups randomly assigned in the entire cohort of 1179 women. Sample sizes are 288 for the placebo group, 445 for the calcium-only (Ca-only) group, and 446 for the calcium plus vitamin D (Ca + D) group. The survival at the end of study for the Ca + D group is significantly higher than that for placebo, by logistic regression. (Copyright Robert P Heaney, 2006. Used with permission.)

Lappe et al. Am J Clin Nutr 85:1586-91, 2007

Expression of CYP27B1

- Increased in hyperplastic colon polyps
- Increased in early stage tumors
- Declines in late-stage neoplasia
- CYP24A1 is induced by 1,25 (OH)₂ D₃
- Tumor cells determine the extent of Vitamin D catabolism

Lechner et al. Molecular and Cellular Endocrinology 263: 55-64, 2006

Antiproliferative Effects of Vitamin D 25 OH in Colon Cancer

Fig. 4. Evaluation of the antiproliferative effect of 25-OH-D₃ in colon cancer cell lines by [³H]-thymidine incorporation into DNA. Caco-2, COGA-1 and COGA-13 cells were exposed to 100 and 10 nM of 25-OH-D₃ (25-D) for 48 h. Data are presented as percentage of vehicle control (C; ***P < 0.001).

Lechner et al. Molecular and Cellular Endocrinology 263: 55-64, 2006

Renal and Colon Vitamin D Synthesis and Catabolism

Figure 3. Comparison of colonic and renal vitamin D synthesis and catabolism. Differences in regulation and function are indicated.

Cross and Kallay Futrue Oncol 5: 493-507, 2009

CYP24A1 and CYP27B1 in Normal Colon and Colon Tumor

Lechner et al. Molecular and Cellular Endocrinology 263: 55-64, 2006

Summary of Vitamin 25 (OH)D Deficiency

- Common, particularly in older women
- Generally asymptomatic
- Causes
 - decreased dietary intake
 - decreased sun exposure
 - Sunscreen
- Diagnosis:Serum 25(OH)D <20 ng/mL and Elevated PTH; insufficiency <30 ng/mL
- Benefits-CVD, diabetes, cancer, immune
- Treatment: Vitamin D

Questions